Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Ashley T Hulme, ${ }^{\text {a }}$ Philippe Fernandes, ${ }^{\mathbf{b}}$ Alastair Florence, ${ }^{\mathbf{b}_{*}}$ Andrea Johnston ${ }^{\text {b }}$ and Kenneth Shankland ${ }^{\text {c }}$
${ }^{\text {a }}$ Christopher Ingold Laboratory, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, England,
${ }^{\mathbf{b}}$ Solid-State Research Group, Department of Pharmaceutical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, Scotland, and ${ }^{\text {c ISIS }}$ Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, England

Correspondence e-mail:

alastair.florence@strath.ac.uk

Key indicators

Powder X-ray study
$T=250 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.054$
$w R$ factor $=0.070$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Powder study of 3-azabicyclo[3.3.1]nonane-2,4-dione form 2

A polycrystalline sample of a new polymorph of the title compound, $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{NO}_{2}$, was produced during a variabletemperature X-ray powder diffraction study. The crystal structure was solved at $1.67 \AA$ resolution by simulated annealing from laboratory powder data collected at 250 K . Subsequent Rietveld refinement yielded an $R_{\text {wp }}$ of 0.070 to $1.54 \AA$ resolution. The structure contains two molecules in the asymmetric unit, which form a $C_{2}^{2}(8)$ chain motif via $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

The crystal structure of the title compound, (I), was solved by simulated annealing using laboratory capillary X-ray powder diffraction data. The compound crystallizes in space group $P 2_{1} / c$ with two independent molecules of 3-azabicyclononane-2,4-dione in the asymmetric unit (Fig. 1).

(I)

The crystal structure of this polymorph (form 2) is approximately a cell-doubled modification of the stable roomtemperature form of 3-azabicyclononane-2,4-dione (form 1) (Howie \& Skakle, 2001), with the cell doubling in the c direction [18.8867 (4) versus 9.3384 (6) \AA A . Form 2 is metastable with respect to form 1 at room temperature, with full conversion taking less than 1 h . However, with rapid cooling to 250 K (the data collection temperature), form 2 is kinetically trapped and stable for over 10 h .

The basic hydrogen-bond motif in (I) is a chain [graph set $C_{2}^{2}(8)$; Etter, 1990] running parallel to the a axis. Each chain contains alternating independent molecules linked by $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1). Form 2 packs the chains in a manner similar to form 1, with the chains lying side by side to form layers (Fig. 2) parallel to the $a b$ plane. The layers are related by the 2_{1} screw axis and the stacking of the layers differs between the two forms, with form 1 showing an $A B$ repeat packing and form 2 an $A B C D$ repeat packing (Fig. 3). This stacking difference can be attributed to form 2 having two symmetry-independent molecules. The stacking in form 2 can be envisaged as related to that of form 1 by a translation of approximately half a unit cell parallel to the b axis of the C and

Received 12 May 2006
Accepted 19 June 2006
D layers. With no strong interactions between the layers, the conversion from form 2 to form 1 would be facile and may account for the rapid conversion at room temperature.

Experimental

A polycrystalline sample of (I) was prepared by heating a sample of the raw material (form 1) to 420 K and subsequently quenching in situ to 250 K . The sample was held in a rotating 0.7 mm borosilicate glass capillary and the temperature controlled using an Oxford Cryosystems Cryostream Plus 700 series device. Data were collected over a period of 7.5 h using a variable-counting-time scheme (Shankland et al., 1997; Hill \& Madsen, 2002) in the range $7-60^{\circ} 2 \theta$. The final data set showed no evidence of diffraction associated with the form 1 structure.

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{NO}_{2}$
$M_{r}=153.18$
Monoclinic, $P 2_{1} / c$
$a=7.67102$ (18) £
$b=10.5483$ (2) \AA
$c=18.8867$ (4) \AA
$\beta=95.5800(12)^{\circ}$
$V=1521.00(6) \AA^{3}$
$Z=8$

Data collection

Bruker AXS D8 Advance diffractometer
Specimen mounting: 0.7 mm borosilicate capillary
Specimen mounted in transmission mode

Refinement

$R_{\mathrm{p}}=0.054$
$R_{\text {wp }}=0.070$
$R_{\text {exp }}=0.016$
$R_{\mathrm{B}}=3.058$
$S=4.31$
Profile function: Fundamental parameters with axial divergence correction.
142 parameters
$D_{x}=1.338 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha_{1}$ radiation
$\mu=0.79 \mathrm{~mm}^{-1}$
$T=250 \mathrm{~K}$
Specimen shape: cylinder
$12 \times 0.7 \times 0.7 \mathrm{~mm}$
Specimen prepared at 420 K
Particle morphology: polycrystalline mass, white

Scan method: step Absorption correction: none $2 \theta_{\text {min }}=7.0,2 \theta_{\text {max }}=60.0^{\circ}$ Increment in $2 \theta=0.017^{\circ}$

H atoms treated by a mixture of independent and constrained refinement
$w=1 / \sigma\left(Y_{\text {obs }}\right)^{2}$
$(\Delta / \sigma)_{\text {max }}=0.111$
Preferred orientation correction: a spherical harmonics-based preferred orientation correction (Järvinen, 1993) was applied with TOPAS (Coelho, 2003) during the Rietveld refinement.

Table 1
Hydrogen-bond geometry ($\left({ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O} 1 w^{\mathrm{i}}$	$0.90(1)$	$2.11(1)$	$3.006(4)$	$172(1)$
$\mathrm{N} 1 w-\mathrm{H} 1 w \cdots 1^{\mathrm{ii}}$	$0.91(1)$	$2.03(1)$	$2.931(4)$	$172(1)$

Symmetry codes: (i) $x+1,-y+\frac{1}{2}, z+\frac{1}{2}$; (ii) $x,-y+\frac{1}{2}, z-\frac{1}{2}$.

The diffraction pattern indexed to a monoclinic cell $[M(18)=28.0$, $F(18)=65.9 ;$ DICVOL91; Boultif \& Louër, 1991] and space group $P 2_{1} / c$ was assigned from volume considerations and a statistical consideration of the systematic absences (Markvardsen et al., 2001). $P 2_{1} / a$ and $P 2_{1} / n$ were discounted as they did not account for the peak attributable to form 2 at $15.63^{\circ} 2 \theta$.

Figure 1
The asymmetric unit of (I) with the atom-numbering scheme. Displacement spheres are shown at the 50% probability level.

Figure 2

Four layers, each containing two ribbons, stacking in an $A B C D$ repeat pattern. The view is parallel to the axis of propagation of the ribbons and the a axis.

The data were background subtracted and truncated to $54.8^{\circ} 2 \theta$ for Pawley fitting (Pawley, 1981; χ^{2} Pawley $=18.50$) and the structure solved using the simulated annealing (SA) global optimization procedure, described previously (David et al., 1998), that is now implemented in the DASH computer program (David et al., 2001). The internal coordinate description (including H atoms) of the molecules was constructed from standard bond lengths, bond angles and bond torsions where appropriate. The structure was solved using data to $54.8^{\circ} 2 \theta$, comprising 402 reflections. The structure was refined against data in the range $7.0-60.0^{\circ} 2 \theta$ (448 reflections). The restraints were set such that bonds and angles did not deviate more than $0.01 \AA$ and 1°, respectively, from their initial values during the refinement. Atoms $\mathrm{C} 1, \mathrm{C} 5, \mathrm{C} 4, \mathrm{C} 2, \mathrm{O} 1, \mathrm{~N} 1, \mathrm{O} 2$ and H 1 (first molecule) and atoms $\mathrm{C} 1 w, \mathrm{C} 5 w, \mathrm{C} 4 w, \mathrm{C} 1 w, \mathrm{O} 1 w, \mathrm{~N} 1 w, \mathrm{O} 2 w$ and $\mathrm{H} 1 w$ (second molecule) of 3-azabicyclo[3.3.1]nonane-2,4-dione were restrained to be coplanar.

The SA structure solution involved the optimization of two independent molecules totaling 12 degrees of freedom (positional and

Figure 3
Overlay of the layer stacking of form 1 (blue) and form 2 (red). The members of the uppermost layer and two bottom layers coincide, while the remaining two layers do not. Hydrogen bonds are shown as dashed lines.
orientational). All degrees of freedom were assigned random values at the start of the simulated annealing run. The best SA solution had a favourable $\chi^{2}{ }_{S A} / \chi_{\text {Pawley }}^{2}$ ratio of 4.5 , had a chemically reasonable packing arrangement and exhibited no significant misfit to the data.

The solved structure was subsequently refined against data in the range $7.0-60.0^{\circ} 2 \theta$ using a restrained Rietveld (1969) method as implemented in TOPAS (Coelho, 2003), with $R_{\text {wp }}$ falling to 0.0698 during the refinement. All atomic positions (including H atoms) for the structure of (I) were refined, subject to a series of restraints on bond lengths, bond angles and planarity. A spherical harmonics (8th order) correction of intensities for preferred orientation was applied in the final refinement (Järvinen, 1993). An 8th order correction yielded a significant improvement in $R_{\text {wp }}$ compared with lower orders. The need for such a high level of correction is most likely due to the effect of the in situ method of sample preparation on particle morphology. The observed and calculated diffraction patterns for the refined crystal structure are shown in Fig. 4.

Data collection: DIFFRAC plus XRD Commander (Kienle \& Jacob, 2003); cell refinement: TOPAS (Coelho, 2003); data reduction: $D A S H$ (David et al., 2001); program(s) used to solve structure: $D A S H$; program(s) used to refine structure: $T O P A S$; molecular graphics: MERCURY (Macrae et al., 2006) and PLATON (Spek, 2003); software used to prepare material for publication: enCIFer (Version 1.1; Allen et al., 2004).

Figure 4
Final observed (points), calculated (line) and difference $\left[\left(y_{\text {obs }}-y_{\text {calc }}\right) /\right.$ $\left.\sigma\left(y_{\text {obs }}\right)\right]$ profiles for the Rietveld refinement of the title compound.

We thank the Basic Technology programme of the UK Research Councils for funding under the project Control and Prediction of the Organic Solid State (http://www.cposs.org.uk). We also thank the EPSRC for grant GR/N07462/01.

References

Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. \& Towler, M. (2004). J. Appl. Cryst. 37, 335-338.
Boultif, A. \& Louër, D. (1991). J. Appl. Cryst. 24, 987-993.
Coelho, A. A. (2003). TOPAS. Version 3.1 User Manual. Bruker AXS GmbH, Karlsruhe, Germany.
David, W. I. F., Shankland, K., Cole, J., Maginn, S., Motherwell, W. D. S. \& Taylor, R. (2001). DASH. Version 3.0 User Manual. Cambridge Crystallographic Data Centre, Cambridge, England.
David, W. I. F., Shankland, K. \& Shankland, N. (1998). Chem. Commun. pp. 931-932.
Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
Hill, R. J. \& Madsen, I. C. (2002). Structure Determination from Powder Diffraction Data, edited by W. I. F. David, K. Shankland, L. B. McCusker \& Ch. Baerlocher, pp. 114-116. Oxford University Press.
Howie, R. A. \& Skakle, J. M. S. (2001). Acta Cryst. E57, o822-o824.
Järvinen, M. (1993). J. Appl. Cryst. 26, 525-531.
Kienle, M. \& Jacob, M. (2003). DIFFRAC plus XRD Commander. Version 2.3. Bruker AXS GmbH, Karlsruhe, Germany.
Markvardsen, A. J., David, W. I. F., Johnson, J. C. \& Shankland, K. (2001). Acta Cryst. A57, 47-54.
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. \& van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.

Pawley, G. S. (1981). J. Appl. Cryst. 14, 357-361.
Rietveld, H. M. (1969). J. Appl. Cryst. 2, 65-71.
Shankland, K., David, W. I. F. \& Sivia, D. S. (1997). J. Mater. Chem. 7, 569-572. Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

[^0]: © 2006 International Union of Crystallography All rights reserved

